Uvw Relations over a Subvariety of a Hyperelliptic Jacobian

نویسنده

  • SHIGEKI MATSUTANI
چکیده

This article extends relations of Mumford’s UV W -expressions to those in subvariety in a hyperelliptic Jacobian using Baker’s method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relations of Al Functions over Subvarieties in a Hyperelliptic Jacobian

The sine-Gordon equation has hyperelliptic al function solutions over a hyperelliptic Jacobian for y = f(x) of arbitrary genus g. This article gives an extension of the sine-Gordon equation to that over subvarieties of the hyperelliptic Jacobian. We also obtain the condition that the sine-Gordon equation in a proper subvariety of the Jacobian is defined.

متن کامل

Finiteness Results for Modular Curves of Genus at Least 2

A curve X over Q is modular if it is dominated by X1(N) for some N ; if in addition the image of its jacobian in J1(N) is contained in the new subvariety of J1(N), then X is called a new modular curve. We prove that for each g ≥ 2, the set of new modular curves over Q of genus g is finite and computable. For the computability result, we prove an algorithmic version of the de Franchis-Severi The...

متن کامل

Finiteness Results for Modular Curves of Genus at Least

A curve X over Q is modular if it is dominated by X1(N) for some N; if in addition the image of its jacobian in J1(N) is contained in the new subvariety of J1(N), then X is called a new modular curve. We prove that for each g ≥ 2, the set of new modular curves over Q of genus g is finite and computable. For the computability result, we prove an algorithmic version of the de Franchis-Severi Theo...

متن کامل

Fast Arithmetic In Jacobian Of Hyperelliptic Curves Of Genus 2 Over GF(p)

In this paper, we suggest a new fast transformation for a divisor addition for hyperelliptic curves. The transformation targets the Jacobian of genus-2 curves over odd characteristic fields in projective representation. Compared to previously published results, the modification reduces the computational complexity and makes hyperelliptic curves more attractive for applications.

متن کامل

Co-Z Divisor Addition Formulae in Jacobian of Genus 2 Hyperelliptic Curves over Prime Fields

in this paper we proposed a new approach to divisor scalar multiplication in Jacobian of genus 2 hyperelliptic curves over fields with odd characteristic, without field inversion. It is based on improved addition formulae of the weight 2 divisors in projective divisor representation in most frequent case that suit very well to scalar multiplication algorithms based on Euclidean addition chains....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004