Uvw Relations over a Subvariety of a Hyperelliptic Jacobian
نویسنده
چکیده
This article extends relations of Mumford’s UV W -expressions to those in subvariety in a hyperelliptic Jacobian using Baker’s method.
منابع مشابه
Relations of Al Functions over Subvarieties in a Hyperelliptic Jacobian
The sine-Gordon equation has hyperelliptic al function solutions over a hyperelliptic Jacobian for y = f(x) of arbitrary genus g. This article gives an extension of the sine-Gordon equation to that over subvarieties of the hyperelliptic Jacobian. We also obtain the condition that the sine-Gordon equation in a proper subvariety of the Jacobian is defined.
متن کاملFiniteness Results for Modular Curves of Genus at Least 2
A curve X over Q is modular if it is dominated by X1(N) for some N ; if in addition the image of its jacobian in J1(N) is contained in the new subvariety of J1(N), then X is called a new modular curve. We prove that for each g ≥ 2, the set of new modular curves over Q of genus g is finite and computable. For the computability result, we prove an algorithmic version of the de Franchis-Severi The...
متن کاملFiniteness Results for Modular Curves of Genus at Least
A curve X over Q is modular if it is dominated by X1(N) for some N; if in addition the image of its jacobian in J1(N) is contained in the new subvariety of J1(N), then X is called a new modular curve. We prove that for each g ≥ 2, the set of new modular curves over Q of genus g is finite and computable. For the computability result, we prove an algorithmic version of the de Franchis-Severi Theo...
متن کاملFast Arithmetic In Jacobian Of Hyperelliptic Curves Of Genus 2 Over GF(p)
In this paper, we suggest a new fast transformation for a divisor addition for hyperelliptic curves. The transformation targets the Jacobian of genus-2 curves over odd characteristic fields in projective representation. Compared to previously published results, the modification reduces the computational complexity and makes hyperelliptic curves more attractive for applications.
متن کاملCo-Z Divisor Addition Formulae in Jacobian of Genus 2 Hyperelliptic Curves over Prime Fields
in this paper we proposed a new approach to divisor scalar multiplication in Jacobian of genus 2 hyperelliptic curves over fields with odd characteristic, without field inversion. It is based on improved addition formulae of the weight 2 divisors in projective divisor representation in most frequent case that suit very well to scalar multiplication algorithms based on Euclidean addition chains....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004